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A B S T R A C T   

As the popularity of recreational fishing gathers global momentum, so does the importance of knowing the 
number of active anglers and their spatial behaviour. Conventional counting methods, however, can be inac-
curate and time-consuming. Here we present two novel methods to monitor recreational fishing applied in 
Kaunas water reservoir (ca 65 km2), Lithuania, comparing their performance to a conventional visual count. 
First, we employed a remotely piloted fixed wing drone which conducted 39 missions distributed over one year 
and compared its accuracy to conventional visual land or boat-based counts. With these data we developed a 
linear model to predict the annual number of anglers depending on weekday and ice conditions. Second, we used 
anonymous data from a popular GPS-enabled sonar device Deeper®, used by anglers to explore underwater 
landscapes and to find fish. The sonar usage probability was calibrated with angler observations from drones 
using Bayesian methods, demonstrating that at any given time ~2 % of anglers are using the sonar device during 
the open water season and ~15 % during the ice fishing season. The calibrated values were then used to estimate 
the total number of anglers, given the daily records of sonar usage in Kaunas water reservoir. The predicted 
annual number of anglers from both linear drone-based and Bayesian sonar-based methods gave similar results of 
25 and 27 thousand anglers within the area during the period of day surveyed, which corresponded to nearly 110 
thousand angling trips in the total reservoir area annually. Our study shows high potential of both drone and fish 
finder digital devices for assessing recreational fishing activities through space and time.   

1. Introduction 

In developed nations about one in ten people fish for recreational 
purposes (Arlinghaus and Cooke, 2009). Worldwide, the estimated 
number of recreational fishers is close to 220 million (World Bank, 2012; 
Arlinghaus et al., 2015), which is five times higher than the number of 
commercial fishers (FAO, 2018). As many developed countries 
increasingly reduce inland and coastal commercial fisheries, recrea-
tional fishing becomes the most important sector and a major ecological 
force (Arlinghaus et al., 2015, 2019). The strength of this force varies 
extensively, but there are many cases where recreational catches exceed 
those of the commercial sector (Coleman et al., 2004; Cooke and Cowx, 
2004; Morales-Nin et al., 2005). Growing recognition of the importance 

of recreational fishing has led to many countries adopting policies 
requiring assessment of fishing effort (Regulatory Impact Solutions Pty 
Ltd, 2019), both for ecological reasons to ensure exploitation remains 
sustainable (Pope et al., 2017), but also as a measure of economic ac-
tivity. Hyder et al. (2018) estimated that in the European Union (EU) 
there are 9 million recreational sea anglers and they represent 1.6 % of 
citizens. Collectively they fish for 78 million days per year, spending on 
average €5.9 billion annually. EU member states have an obligation to 
collect annual data from marine recreational fishing (EU, 2001), but 
fulfilling these requirements remains a substantial challenge. Unlike 
commercial fishing with compulsory reporting, a lot of recreational 
fisheries data collection relies on volunteerism (Rotman et al., 2012) or 
time-consuming surveys. Anglers can be highly mobile in search of 
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fishing opportunities (Papenfuss et al., 2015), and fisheries can occur 
over large geographic areas encompassing all waterbodies in a country. 

Conventionally, data on recreational effort and catch is collected 
using regular onsite surveys such as creel surveys or aerial- and vessel- 
based counts, recall surveys such as web, phone and postal surveys, 
angler diaries or high frequency time-lapse cameras and fixed cameras 
(Steffe et al., 2005; Smallwood et al., 2011; Bellanger and Levrel, 2017; 
Askey et al., 2018; Conron et al., 2018). All of these have their own 
challenges and limitations. Phone or postal surveys have increasingly 
low participation rates, especially as data communication moves onto 
digital platforms (Tate and Smallwood, 2021), and do not necessarily 
represent an unbiased sample of the angler population. Boat-based 
census, roving creel surveys on foot, or aerial surveys, require substan-
tial human and operational resources (vessel, tow vehicle, fuel, airplane 
hire) and can be time consuming and costly (Ryan et al., 2009). 
Time-lapse or fixed cameras which can collect information about effort 
are relatively cheap but are impractical in some places due to equipment 
loss, immobility, and time-consuming image processing and analyses 
(Afrifa-Yamoah et al., 2021). 

Two recent technological advancements hold promise for improving 
the accuracy and cost-effectiveness of angler effort assessments. The first 
one employs camera-equipped remotely piloted aircraft (Chapman 
et al., 2014), hereinafter - drones. Given the growing success of drones 
for supporting coastal management, they may also provide a 
cost-effective solution for collecting data on recreational fishing effort 
(Provost et al., 2020a). This approach uses aerial surveys to gather a 
series of instantaneous counts of the number of active anglers and then 
extrapolates that information to an estimate of angler effort over an 
entire fishing season (e.g., Fraidenburg and Bargmann, 1982; Vølstad 
et al., 2006). Despite a rapid uptake of drones in multiple areas, only a 
few studies have attempted to count anglers using this technology. 
Desfosses et al. (2019) suggest that multi-rotor drones are not efficient 
for recreational fishing surveys due to short battery endurance, low 
flying speed, sensitivity to strong winds, dependence on visual line of 
sight and regulations requiring certification of operators. They sug-
gested that fixed-wing drones that have extended-visual line of sight 
(EVLOS) and longer battery life could be viable alternatives but will still 
be affected by weather conditions. The second approach involves angler 
smart phone applications (apps) which have grown in popularity over 
the last decade (Venturelli et al., 2016; Skov et al., 2021). These may be 
developed by commercial companies or research institutions, and they 
allow fishers to register and share information with researchers about 
their trips and catches (e. g. Gundelund et al., 2020). Often, the apps 
include ancillary features that are attractive to anglers such as social 
networking, information about rules and regulations, depth profile maps 
and identifiable sonar features. When designed properly and used by a 
sufficient proportion of anglers, such apps have the potential to provide 
sufficiently accurate information on catch rates and angling effort, as in 
the case of coastal seatrout fishery in Denmark (Gundelund et al., 2021). 

In this study, we further advance the drone and smart phone 
application-based methods for angler assessments, aiming to improve 
their utility by building on their strengths and redressing their limita-
tions. Throughout one year we conducted a range of surveys in a large 
(ca 65 km2) inland water reservoir (WR) which is one of the most 
popular recreational fishing destinations in Lithuania. We compared 
recreational fishing effort assessment from fixed-wing drone surveys, 
visual land and boat-based surveys and anonymous data from a smart-
phone application that integrates with a sonar (fish finder) deployed in 
the water and developed models to assess recreational fishing effort 
through space and time. The overall objective was to understand if and 
when drones and sonar applications for anglers could be used to esti-
mate angling effort. 

2. Materials and methods 

2.1. Research area 

Our study area is Kaunas WR (54.87, 24.14), the largest Lithuanian 
artificial water body, created in 1959 (Fig. 1). It occupies 63.5 km2, 
spans 3.3 km at its widest point, and has a maximum depth of 22 m. The 
reservoir is a highly productive ecosystem and for decades supported an 
intensive commercial fishery, with annual catches averaging 128 tons 
during 1999–2012. Due to this intensive fishing, stocks of many species 
collapsed, and the commercial fishery was completely closed in 2013. 
Since then, the abundance and biomass of most species has recovered 
rapidly (Ložys et al., 2020) and the reservoir has become one of the most 
popular angling spots in Lithuania. The dominant fish species in the 
reservoir are roach (Rutilus rutilus), perch (Perca fluviatilis), white bream 
(Blicca bjoerkna), bream (Abramis brama) and pikeperch (Sander lucio-
perca) (Ložys et al., 2020). 

2.2. Drone missions 

The survey period covered one year, starting in March 2020 and 
finishing on March 2021 encompassing an ice-free ‘open water season’ 
and a winter ‘ice fishing season’ when the surface waters of the reservoir 
were frozen. During the survey period we conducted 39 drone missions, 
distributed throughout the four seasons of the year. Ten flights were 
flown during each of summer, autumn and winter seasons, and nine 
missions were performed in spring. During each season four missions 
were performed on weekends and six during working days, aiming to 
distribute the missions randomly through seasons and days of the week. 
Weather conditions did not influence the mission schedule that was set 
in advance. The main goal of the drone surveys was to estimate the 
proportion of anglers using the sonar fishfinder device (see below), 
rather than estimate total recreational fishing effort. To achieve the 
maximum sample size for calibrating the relative number of anglers, 
reduce variation due to the time of the day and maximise information 
related to season and weekday we conducted all drone surveys in the 
mornings, between 8 am and 11 am, which is the usual peak period of 
angler activity. Note, the drone surveys were distributed across seasons 
and days of the week to assess whether the sonar usage probability 
differs across these times (e.g., people with higher incomes and higher 
probability of owning a device may be more likely to fish only in summer 
or on weekends). We did not expect such a difference between times of 
the day and therefore conducted all drone surveys in the morning. 
Permission for all flights was granted by the Lithuanian Transport Safety 
Administration, NOTAMs issued by SE „Oro navigacija“ (State Enter-
prise Air Navigation). The drone angler surveys were performed using a 
custom drone SilverBee_V3000 by Thrust® (AeroDiagnostika Ltd.), 
equipped with two wide-angle RGB video cameras. SilverBee_V3000 is 
an electric fixed-wing drone with a maximum take-off weight of 7.5 kg 
and payload of 1 kg. The optimum flight time of the drone with payload 
is 45–60 min per battery, depending on the weather conditions. Because 
the northern part of the Kaunas WR falls within the local airport no-fly 
zone, we surveyed about 70 % of the reservoir area, for which flight 
permits could be obtained. This area covered about 33 km2 and was 
surveyed in two flights (northern and southern), operated from one 
land-based location (Fig. 1). The maximum straight-line distance be-
tween the drone and the operator was around 8 km during the flight and 
all flights were performed beyond visual line of sight. The flights were 
fully automated and controlled by the drone’s on-board autopilot 
following the pre-programmed flight trajectory with global navigation 
satellite system, inertial navigation system and electronic compass to 
ensure precise geolocation. Real-time drone performance parameters 
and mission progress status were continuously monitored using 
433 MHz wireless radio and/or 4 G mobile connection during the flight. 

Several combinations of sensors were tested during the optimisation 
of angler counting, to maximise efficiency, payload and quality of the 
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visual data to enable visual identification of anglers in boats and 
onshore. After testing alternative cameras with resolution ranging 2–50 
megapixel, lenses with focal length of 3 − 50 mm, and resulting payload 
of 0.1–1.0 kg, the optimal trade-off in terms of weight, data amounts and 
angler count accuracy was to use two side-by-side wide-angle (3 mm 
focal length) 12-megapixel video cameras, with a combined weight of 
0.2 kg. One camera was oriented along the flight direction facing for-
ward with a downward angle of ~25◦, and the second camera was 
placed on the right side of the drone, oriented towards the shore at a 
~30◦ angle (Fig. 1). This allowed us to achieve a > 180◦ angle of view 
both horizontally and vertically. 

The drone trajectory followed the shoreline at a distance of ca 
75–100 m and altitude of 50–70 m, flying at a speed of 16–18 m/s 
(58–65 km/h). This observation angle and flying height gave the width 
of the survey corridor of 1000–1600 m. This means that in our case a 
single scan along the perimeter of the reservoir was sufficient to fully 
cover the study area (Fig. 1), while avoiding surveying overlapping 
areas and counting the same anglers multiple times, unless anglers 
relocated to an opposite shore of the WR within the 30 min period of one 
mission (which is highly unlikely due to the distance and short time 
duration). The width of the survey corridor can be adjusted depending 
on the site, which can increase the efficiency of the aerial survey 
compared to grid-like or spiral-like scanning with a smaller field of view. 
Flights were made during a range of weather conditions, including light 
rain, fog, snow, strong winds (up to 15 m/s) and low temperatures 
(− 20 C◦). In very strong opposing winds, ground speed could be as low 
as 3 m/s, yet this did not affect the survey because flight trajectories 
were programmed in advance. Following the completion of each drone 
mission onsite, the video material from both cameras was analysed 
manually together with the telemetry logs for geolocation. 

2.3. Visual surveys 

To compare the accuracy and precision of drone-based surveys with 
traditional land-based methods, we performed five angler count surveys 
of which three were done from a boat during the open water season (2 
weekdays and one weekend day) and two were done by walking during 
the ice fishing season (one weekday and one weekend day). Boat-based 
surveys were undertaken from an inflatable boat equipped with a 3 HP 
engine, travelling at 8–9 km/h speed at a distance of ca. 300 m from the 
shore (Fig. 1). Anglers were observed using binoculars (DELTA Optical 
Forest II 8.5 ×50) and each angler was attributed to a category of either 
“on-shore” or “fishing from a boat” and their approximate coordinates 
were noted. During the ice fishing season, fishers were counted by the 
observer from 12 fixed sites, which provided a good field of view across 
the reservoir (Fig. 1). As per the boat surveys, binoculars were used to 
count anglers and identify their approximate location. 

2.4. Sonar data 

Deeper® sonars comprise a set of portable wireless sonar-based fish- 
finders, generally used by anglers for fish finding, depth measuring and 
making bathymetry maps for personal use. More information about the 
different DeeperSonar company’s fish-finder models and their technical 
characteristics is available at https://deepersonar.com/. According to 
company data and our angler surveys (unpubl. data) about 20 % of 
Lithuanian anglers own one of several models of this fish finder; these 
anglers use the device in about 20–50 % of their trips. The anonymous 
sonar usage information for Lithuania was obtained through a collabo-
rative agreement with the DeeperSonar company, in accordance with 
the data privacy and protection requirements. The dataset included in-
dividual sonar usage events, identified through unique encoded user ID, 
time and coordinates of the starting point, followed by coordinates of all 
sonar reading points taken during the trip. For each new reading, the 

Fig. 1. Side and front views of the wide-angle camera setup used for aerial survey, where CAM1 is facing forward and downward (β ≈ 25◦) optimized to view boat- 
based anglers and CAM2 is facing right-side downward (α ≈ 30◦) to increase the visibility of anglers at the shoreline. The map of the Kaunas water reservoir shows 
the two drone flight paths, divided into two mission trajectories (yellow and blue); red points indicate traditional visual observation sites during the ice fishing 
season. The inset show Kaunas WR location in Lithuania. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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user can select to either start a new trip, or continue the same trip, so in 
our analyses we filtered unique users per day to exclude repeated mis-
sions by the same user. The country-wide dataset was filtered to extract 
records located within the Kaunas reservoir (with a 50 m buffer, to 
ensure all anglers on the shore were included), and then divided into 
smaller datasets that included only anglers within the drone survey area 
and time period (see below). 

2.5. Statistical analysis 

To compare visual and drone surveys we used an unpaired t-test 
(Table 1) (adding Welsh correction for unequal variances gave nearly 
identical results). In this test we compared total angler count (on shore, 
in boats and on ice) from the two methods (five sampling days), number 
of anglers counted on shore (three days), number of boats counted (three 
days) and number of anglers in boats (three days) (see Results for details 
and numbers counted). Post-hoc power analysis of effect size and mini-
mum detectable difference was undertaken for the t-test results. 

To estimate and predict the total number of anglers within the sur-
veyed reservoir area and time period (mornings only), we used the 
angler counts from the 39 drone surveys in a linear model, where angler 
numbers were modelled as a function of weekday/weekend, season, 
open-water/ice, cloudiness (clear, cloudy, rain, fog, snow) and wind 
conditions, including their interactions. The drone surveys were used to 
establish a relationship between the number of anglers on the reservoir 
in the survey area and daily sonar usage data, and not to estimate the 
total number of anglers in the reservoir. In the linear model, angler 
numbers were log transformed to ensure that the model did not predict 
negative values. After exploring model performance and the residuals 
we identified two outlier day observations, both occurring at the start of 
the drone survey period (second and third mission), during the peak of 
the first COVID-19 lockdown (April 2020). On both of these days un-
usually low angler numbers were observed, and the days were also 
identified as clear outliers in the dataset, when model residuals were 
explored. It is likely that such low angler numbers were due to COVID-19 
lockdowns during the first wave of the pandemic and did not reflect 
typical angling activity. To avoid the two outlier days unduly affecting 
our model predictions we conducted analyses with the two days both 
excluded and included (Table A.1). When the two outlier days were 
excluded, model residuals showed an improved and adequate fit to the 
assumptions of normality. We tested a range of alternative model for-
mulations and identified the most important explanatory variables, in a 
model selection process based on the Akaike Information Criterion (AIC) 
and Chi-square test of nested models (see Table A.2 for model formu-
lations and model selection outcomes). Once the best model was 
selected, we then used this model to estimate the total number of anglers 
per year. 

To compare drone and sonar-based angler counts, we used Bayesian 
methods to estimate the probability (pd) of sonar use in each angling 
trip. This combines the probability that an angler who owns a Deeper® 
sonar device will use it on a given fishing trip. This probability was 
estimated using the full data set of drone observations (39 days) 
described above, where we counted the angler numbers. For this anal-
ysis, the sonar usage dataset was filtered in three different ways. First, 

we selected sonar usage data only from the area and time period sur-
veyed by drones. Drone flights were conducted ca 8–11 am, so we used 
those sonar data for which the start time of the trips was between 6 am 
and 12 pm; this aimed to account for the fact that most anglers use the 
sonar device at the start of the fishing trip, but in theory could also use it 
later during the same trip. The second dataset of sonar usage included all 
sonar users within the area surveyed by the drone on each specific day, 
regardless of when their sonar was used during that day. Finally, to 
assess the relative proportion of anglers in the surveyed area versus the 
entire Kaunas WR, we also extracted the number of sonar usage trips 
started anytime during the days of the drone surveys. This last dataset 
had the largest number of sonar records and was used to estimate the 
ratio between the total number of anglers in the reservoir fishing at any 
time of the day, and the number of anglers counted by drones (smaller 
area confined to the morning). Note, that the northern part of the Kaunas 
WR that was inaccessible for the drone, is also closest to the city of 
Kaunas, and therefore we expected high numbers of anglers in that area. 
We assumed that the proportion of sonar users remained similar in 
different areas of Kaunas WR and during different times of the day. The 
full dataset of anglers counted by drones, as well as the three sets of 
sonar users is provided in Table A.3. 

Each of the three sonar usage datasets was related to the drone angler 
surveys allowing for the probability of sonar usage to differ on weekdays 
and weekends. The weekend multiplier a means that the final proba-
bility pd of sonar usage is expressed as r0*e(aW), where r0 indicates the 
general sonar use probability and W represents weekdays (0) or week-
ends (1). The value of 0 for the a parameters would indicate the same 
probability of sonar usage on weekdays and weekends, whereas values 
of e. g. 1 would mean an almost three-fold higher weekend or ice fishing 
probability of sonar use. To ensure that the estimated probabilities were 
always positive in our analyses we used a linearised version of this 
equation: 

pd = 1 − e− (r0eaW)

The r0 parameter was assumed to be drawn from an exponential 
distribution with rate parameter r1 and log likelihood defined as logL 
= log(r1) – r1* r0. The weekend probability multiplier was drawn from a 
normal distribution with zero mean and standard deviation of 10. These 
probabilities form the basis of our likelihood function and we used 
Bayesian methods to estimate a and r0. Our initial analyses showed that 
sonar usage differed greatly between the open water and ice fishing 
seasons, because the specific Deeper® sonar device (small, portable) is 
especially convenient for ice fishing, while during the open water fishing 
season many anglers use more advanced sonar devices that can be 
attached to boats. We therefore conducted two separate analyses for 
open water and ice fishing season. 

Finally, we also used Bayesian methods on the sonar dataset to es-
timate the proportion of anglers in the morning for the surveyed area 
versus the total number of fishing trips recorded on that day. (i.e. 
comparing sonar 1 dataset in Table A.3 versus sonar 3 dataset). For these 
analyses we used all 365 days of sonar observations from March 1, 2020 
to March 1, 2021, which were divided into 316 open water days and 49 
ice fishing days (based on known weather and ice records). Here the r0 
compares the relative number of sonar users in the two sonar datasets, 

Table 1 
Comparison of angler counts from aerial surveys by drones (A) and land-based visual surveys from a boat or ice (L). T (df): two-tailed paired test t value and degrees of 
freedom, P: probability of null hypothesis of no difference in the count.   

2020.05.15 2020.08.12 2020.10.24 2021.01.21 2021.02.19    

L A L A L A L A L A T (df) P 

Total count 70 72 49 55 205 170 59 51 41 42 0.18 (8) 0.86 
No of boats 14 15 24 20 99 98     0.03 (4) 0.97 
Boat anglers 18 15 31 33 186 146     0.20 (4) 0.85 
Shore anglers 52 57 18 22 19 24     -0.29 (4) 0.78 
Ice anglers       59 51 41 42 0.35 (2) 0.76  
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whereas weekend multiplier a estimates whether this ratio differs be-
tween weekdays and weekends. Here again, we assumed that the pro-
portion of sonar users among all anglers was similar in different parts of 
the reservoir and at different times of the day. 

Markov Chain Monte Carlo (MCMC) sampling was run for 200 K it-
erations, of which the first 10 − 20 K were discarded as the burn-in, after 
checking for convergence of the likelihood estimates. The remaining 
runs were used to generate posterior probability density ranges, after 
checking that the posterior distributions were unimodal indicating 
convergence. We conducted analyses with different priors, but solutions 
always converged to nearly identical posterior parameter estimates. All 
analyses were conducted in R 4.0.3 or 4.0.5 (R Core Team, 2021), full 
analysis code and data are available on https://github.com/ast 
aaudzi/anglerCounts and as a supplement to this manuscript. 

3. Results 

3.1. Drone surveys give accurate estimates of angler numbers when 
compared with traditional, land-based surveys 

During the 39 days of drone surveys a total of 2980 anglers were 
observed (see Fig. A.1a-h for example photos from drone surveys). The 
number observed per day varied from 7 to 180, with a median value of 
69 anglers. The largest number of anglers was observed during the ice- 
fishing season (N = 180). Of the 2980 anglers, the majority (2378) were 
observed during the open-water season; of these 43.0 % were land based 
and 57.0 % were boat based. During winter (ice fishing season) 602 
anglers were observed. Over the five days of visual land and boat-based 
surveys, 424 anglers were counted in total (324 during open water, and 
100 during ice fishing seasons). The number of anglers observed per day 
varied from 41 to 205, with a median value of 59. During the open-water 
season 27.5 % of anglers observed visually were land based and 72.5 % 
were boat based. There were no significant differences between total 
angler numbers observed by traditional visual methods and drone sur-
veys, including for anglers observed on shore or from boats, or the total 
number of boats counted (t-test, P values > 0.75, Table 1). A caveat to 
this result is that due to the low number of replications, the statistical 
power to detect differences was low at only 5–6 %, so the test would only 
detect very large difference as significant. Nevertheless, the correlations 
among the methods were extremely high. Usually, the total count of 
anglers was almost the same, and small differences were likely due to 
angler movements and slight differences in survey times. Drone and 
boat-based surveys sometimes differed by up to 1 h due to different boat 
and drone movement speeds. The only clear discrepancy was observed 
when counting anglers in boats, where drone and visual surveys counted 
146 and 186 anglers, respectively. These mismatches were mainly due to 
the different number of anglers in a single boat counted by the two 
methods, because the number of boats was almost the same (98 vs. 99). 
Separating passengers and anglers in a boat from drone observations 
was deemed to be too difficult, and in drone surveys one boat was 
typically assumed to correspond to one or two anglers. Note that the 
assumption of one angler per one boat does not affect our calibration of 
sonar usage from drone data, because usually only one sonar device per 
boat would be used. This assumption means that we might be under-
estimating angler numbers, which would make our predictions about the 
total angling effort conservative. 

Linear model selection showed that the best selected model included 
the interaction of ice cover with weekend / weekday (R2 = 0.32). The 
second-best model with the same AIC value had only the weekend effect 
(R2 = 0.22) (Table A.2, Fig. A.2). The model with the two outliers 
included had an almost identical parameter estimates (Table A.1), sug-
gesting that exclusion of potential outlier points does not affect general 
model predictions. Naturally, when outlier points were included, the 
model explained less of the variance (R2 = 0.16) (Table A.1). This means 
that including the two outlier points would increase the uncertainty in 
predicting angler numbers. However, since our main angler number 

prediction was based on the sonar observations (see below) and the 
drone data were only used to calibrate the sonar usage, inclusion or 
exclusion of outliers did not influence the final predictions (all data 
points were used in drone-sonar calibration, see below). In all, the best 
selected model indicated a significantly higher number of anglers fishing 
during the weekends, especially on weekends with ice cover (Fig. 2). 

The best statistical model could now be used to predict the number of 
anglers over the entire year. For this we used the one-year period 
starting from 2020 to 03–01, which includes the ice fishing season be-
tween 2021 and 01–10 and 2021–02–28. The estimated mean and 
confidence intervals of angler numbers in the assessed area were 
~25 * 103 (20 *103–31 *103) (Table 2), which included 22 * 103 for the 
open water fishing season and ca 3 * 103 for the seven weeks of the ice 
fishing season. When the two outlier days were included in the analyses, 
overall predictions were similar, but confidence ranges were wider 
(mean 22458, 95 % CI of 15868 –32291). Finally, if only a model with 
weekday and weekend effects was used, then the predicted annual 
number was almost identical, at 25031 (20739–30212). Note, that this 
prediction only applies for the surveyed area (ca 70 % of the total 
reservoir area) and time period (i.e. anglers who fish during the first half 
of the day). To extrapolate these estimates to the entire area of the 
Kaunas WR using only drone data, we would need independent obser-
vations about the relative number of anglers in mornings and afternoons 
and in the surveyed versus unsurveyed areas. Such independent obser-
vations were not available, and any a priori assumptions (e.g., anglers 
are distributed evenly) would be questionable. Therefore, to estimate 
the total number of fishing trips conducted at any time of the day in the 
entire Kaunas WR we only used the calibrated sonar data, as described 
below. 

3.2. Angler effort estimated from drones is similar to sonar use data 

After establishing that drone surveys can produce accurate measures 
of angler numbers, we now calibrated sonar usage data against the drone 
observations. In the first analysis we compared drone-based estimates 
with the smallest sonar dataset, which only included sonar users who 
logged the start of their fishing “trip” within the area surveyed by the 
drone at between 6 am and 12 pm. In the open water fishing season, the 
estimated baseline proportion of sonar users (r0) was ca 1 % (95 % 
posterior probability density PPD of 0.5–1.7 %) (Table 3, Fig. 3). This 
probability was ~3.5 times higher on weekends (Table 2, exp(a) = exp 
(1.24) = 3.46). As a result, the final average probability of sonar usage 
was 2.0 % (95 % PPD of 1.5–2.6 %). For the ice fishing season, the 
probability of sonar usage was considerably higher, because the 
Deeper® sonar device is particularly popular for this purpose. The 
proportion of sonar users was similar between weekdays and weekends 
during the ice fishing season; the final probability was 15 % (12–18 %, 
Table 3). As expected, when the same analyses were repeated using 
sonar users who started their trips at any time of the day, the number of 
sonar users relative to the total number of anglers (counted in the 
morning) increased. This was most prominent during the open water 
season, where the estimated proportion was more than twice as large 
(final probability of 5.4 % rather than 2.0 %). This suggested that drone 
counts conducted during the morning only detected about half of all the 
anglers who fished on that day (Figures A.4 and A.5). During the ice 
season, most angling trips commenced in the morning, and the differ-
ence between the two datasets was very small (14.8 % and 17.2 % 
respectively, Table 3). 

To obtain a better extrapolation of angler numbers from the drone 
counts (mornings only, and the 70 % of the water reservoir area where 
drones were allowed to fly) to the total number of anglers in the reser-
voir, we conducted a separate analysis with the daily sonar usage data. 
These analyses showed that the ratio between the two datasets was ~25 
% during the open water and ~20 % in the ice fishing seasons. The 
majority of anglers concentrated in the northern area of the water 
reservoir, where drone flights were not allowed, mainly because the 
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northern area is adjacent to the city of Kaunas. 
Bayesian estimates of sonar usage probabilities (Table 3.) could now 

be used to estimate the annual number of angling trips conducted in the 
mornings within the drone surveyed area. For this estimation linear 
model predictions were not required, instead it relied upon the daily 
numbers of sonar users (Table A.4). As with the linear model analyses, 
we estimated the annual number of fishing trips starting from 2020-03- 
01, but unlike the linear model, we used the actual daily number of 
sonar trips logged in the mornings within the surveyed area and applied 
the parameter estimates and their 95 % PPD values to convert the 
number of sonar users to the actual number of anglers (in the mornings 

within the surveyed area). Here, the estimated annual number of angling 
trips was ca ~27 * 103 (14 *103–58 *103), which included ~24 * 103 

anglers during the open water season and ~2.5 * 103 during the ice 
fishing season (Table 2). These numbers were similar to the linear model 
results with 95 % PPD ranges overlapping with the linear model confi-
dence ranges (note however that these uncertainty estimates are not 
identical measures, being derived from different assumptions). 

To extrapolate this number to the total Kaunas WR area for angling 
trips conducted at any time of the day we used two slightly different 
methods. For Method 1, we combined two sources of uncertainty – es-
timates of sonar usage proportion in the mornings for the survey area 
(Table 3 top) and those for extrapolating from the surveyed area in the 
mornings to the total numbers of daily sonar users in the reservoir. 
(Table 3 bottom). This gave a total 50 % posterior probability estimate 
of 107 * 103 annual angling trips in the Kaunas WR, which included ca 
98 * 103 trips during the open water season and 12 * 103 for the seven 
weeks of ice fishing season (Table 2). Alternatively (Method 2), we 
simply assumed that the probability of sonar usage was identical for the 
entire Kaunas WR during any time of the day. Then we used total the 
number of sonar users recorded on each day anywhere in the Kaunas WR 
and applied the probability of sonar usage proportion (Table 2 top) for 
open water and ice fishing seasons separately. The two approaches gave 
substantially similar results (Table 2), although the uncertainty ranges 
for the second method were slightly smaller. 

4. Discussion 

In this comparative study we explored three different methods to 
assess angling effort in a large water reservoir. We found that traditional 
vessel-based and fixed-wing drone methods gave similar accuracy, but 
drone missions were more time effective (with further possibilities for 
improvement) and also provided objective high-resolution digital re-
cords for data quality reassessment and future analyses. A total of 39 
surveys conducted over four seasons of a year were sufficient to estimate 
the annual number of fishing trips with relatively low uncertainty 

Fig. 2. Observed (blue dots) and model predicted (red confidence ranges) numbers of anglers per day on weekdays and weekends, depending on ice conditions, 
estimated from 37 drone surveys (two outlier days excluded). The grey area shows the distribution shape of the data. Model with the full dataset from 39 days is 
shown in Figure A.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Predicted annual number of anglers with 95 % confidence ranges based on the 
linear model from drone estimates, and Bayesian posterior probability median 
and 95 % credible interval ranges based on daily sonar counts in Kaunas water 
reservoir. Prediction is for the period of 2020–03–01 to 2021–02–28, which 
includes the ice fishing season (which lasted between 2021 and 01–15 and 
2021–02–28). Estimates of total angler numbers in Kaunas WR combine un-
certainties for angler proportion in the surveyed area and those for extrapolating 
to the entire WR.  

Method Total number Open water 
only 

Ice season 
only 

Surveyed area, mornings 
only    

Linear model (drones) 25 126 (20 
086–31 603) 

22 097 (18 
097–26 984) 

3 030 (1 
989–4 618) 

Bayesian (sonar) 26 696 (14 
256–58 201) 

24 221 (12 
457–54 823) 

2 475 (1 
799–3 378) 

Estimate for the total 
Kaunas WR (sonar data 
only)    

method 1 107 175 (52 
594–254 563) 

97984 (44 489 
–236 304) 

12 191 (8 
104–18 259) 

method 2 108 434 (59 
359–228 493) 

96407 (50 
630–212 070) 

12 027 (8 
729–16 423)  
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ranges, identifying about ~25 thousand annual fishing trips within the 
surveyed area for the particular time period of the day. This number was 
similar to estimates from the daily sonar records (~26 thousand), which 
although not entirely independent (because of the drone-based cali-
brations) still provided high resolution daily records of sonar users. 
Notably, the linear model, with and without ice effect, gave similar 
overall annual estimates of anglers, suggesting that a simple model with 
only a weekend effect might be able to capture most of the variation in 
fishing effort. 

4.1. Fixed wing drones can provide fast and accurate methods for angler 
counts 

As recreational fishery becomes one of the most important sources of 
fishing mortality in many freshwater and coastal marine environments, 
there is an urgent need to develop rapid angling effort assessment 
methods, yet such assessments are still remarkably rare (but see Veiga 
et al., 2010; Pope et al., 2017; Askey et al., 2018; Provost et al., 2020b, 
for specific examples). The most common methods used to date include 
roving surveys on foot or from a boat (Veiga et al., 2010; Provost et al., 
2020b), high frequency time-lapse cameras (Askey et al., 2018), small 
drones – quadcopters (Provost et al., 2020b) and small fixed-wing 
aircraft e. g. Cessna 210 (Veiga et al., 2010). Although fixed-wing 
drones have been used in fisheries management for a while (Kopaska, 
2014), they are mostly applied for habitat mapping or even water 
quality surveys (Shintani and Fonstad, 2017), but not for enumerating 
angler activity. Yet, fixed wing drones have many advantages over 
smaller quadcopter type drones, such as faster flying speed, longer 
battery life, lower sensitivity to weather conditions and higher payload 

capacity (González-Jorge et al., 2017; Harris et al., 2019). Fixed wing 
drones still have shorter flying times than airplane-based surveys, but 
airplane surveys are likely much more expensive, require highly trained 
personnel (pilots) and are often not feasible for smaller research pro-
jects. Below we compare previous and our current drone and land-based 
surveys in terms of their accuracy, time and costs, reproducibility and 
application in different weather and light conditions. 

First of all, it must be noted that accuracy and precision of drone- 
based surveys will strongly depend on the resolution of recorded video 
and levels of experience of the drone operators. This resolution will be a 
trade-off between the weight of the cameras, data intensity and analysis 
accuracy. The optimum resolution used in our study was 4 K cameras 
and video recording of 30–60 fps. With two cameras working in parallel 
this produced up to 1 GB of video data for a 1.5-hour mission. Post- 
processing of all 39 surveys was done by the same person, leading to 
consistency of final angler counts and rapid post-processing speed after 
an initial training period. Boat-based surveys were conducted by two 
experienced people, who, given a relatively slow boat speed could 
thoroughly survey the entire coastline. As a result, the final angler 
counts in drone and boat surveys were very similar, except when 
counting the number of anglers per boat. Here, the drone-based team 
made a decision to count only one angler per each small motorboat or 
inflatable rowing boat and eliminate all yachts as non-anglers (the same 
was done in the visual boat-based surveys). Although in many cases 
drone footage could identify individual fishing rods, assessing how 
many people in each boat had rods could create a substantial error and 
require lengthy post-processing analysis. Such distinction between an-
glers and non-anglers was easier to make when surveying from a boat, 
although absence of a permanent digital record means that in each case 
such decisions remain partly subjective and could be biased. The chal-
lenge of identifying people in boats as anglers or non-anglers is not new. 
For example, angler counts from manned aircraft and drone (quad-
copter) systems within a 10.6 km length of Beaver Dam Tailwater (USA) 
also mostly differed in how anglers in boats were counted (Fernando 
et al., 2019). More people in boats were considered to be boat anglers 
using the manned aircraft than the drones as observers in the manned 
aircraft recorded some non-fishing boat occupants as anglers (confirmed 
with a detailed analysis of drone records). These results suggest that the 
permanent record made by a drone has a huge advantage due to its 
higher precision attained during postprocessing, although this may 
come at increased analytical costs. 

Our results are quite different from Provost et al. (2020b), who 
compared boat-based counts with those from a small quadcopter drone 
equipped with one standard integrated camera with a polarising lens. 
During 16 surveys it was found that on average the drone observed only 
half of the anglers counted by boat and took three times longer to 
complete each survey (including time needed for video analysis). These 
authors concluded that using quadcopter drones was cheaper compared 
to vessel-based surveys, but the drone surveys took longer and failed to 
detect all fishers, especially those underneath trees or obscured by ob-
jects (Provost et al., 2020b). Obviously, counting anglers obscured by 
vegetation is a challenge for all visual surveys, but in drone-based an-
alyses this could be partly overcome by using two or three cameras with 
different viewing angles. In our study the drone was equipped with two 
cameras, one of them inclined at an angle to provide a better lateral view 
(Fig. 1). Further, drone-based surveys can have a substantial advantage 
if they are also equipped with infrared cameras, such as already 
commonly used in wildlife research (Burke et al., 2019). The application 
of infrared cameras also opens up a possibility for drone-based angler 
surveys to be conducted at night or in low visibility conditions. 

The second important aspect of comparing traditional and drone- 
based surveys is the price and accessibility to good quality affordable 
devices across different countries. In our study, the initial cost of a fully 
equipped fixed-wing drone was slightly higher (c. 3500 euro) compared 
to equipment needed for vessel-based missions (c. 2800 euro), yet the 
price per individual mission was lower for drones due to the 

Table 3 
Bayesian parameter estimates (50 % posterior probabilities and 95 % ranges) for 
the proportion of anglers using a sonar device, compared to the number of an-
glers counted by drone and the proportion of sonar users in the surveyed area 
and time period versus total daily number of users in the reservoir.  

Parameter Explanation Open water 
season 

Ice season 

Main drone – sonar 
analysis (sonar dataset 
1, same spatial area, 
only morning sonar trip)    

r0 initial sonar 
use probability 

0.010 
(0.005–0.017) 

0.152 
(0.114–0.190) 

a weekend 
multiplier 
(log) 

1.241 
(0.606–1.934) 

0.079 
(0.003–0.346) 

p final sonar use 
probability 

0.020 
(0.015–0.026) 

0.148 
(0.121–0.178) 

Drones – sonar dataset 2 
(same spatial area, trips 
started any time of the 
day)    

r0 initial sonar 
use probability 

0.037 
(0.027–0.049) 

0.180 
(0.137–0.221) 

a weekend 
multiplier 
(log) 

0.759 
(0.405–1.147) 

0.074 
(0.003–0.306) 

p final sonar use 
probability 

0.054 
(0.046–0.063) 

0.172 
(0.143–0.203) 

Ratio of anglers in sonar 
dataset 1 vs. sonar 
dataset 3 (all water 
reservoir, trips started 
any time of the day)    

r0 ratio of anglers 0.273 
(0.235–0.312) 

0.222 
(0.196–0.248) 

a weekend 
multiplier 
(log) 

0.248 
(0.072–0.450) 

0.062 
(0.002–0.209) 

p final ratio 0.255 
(0.232–0.280) 

0.203 
(0.185–0.222)  
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considerably shorter time required for analysis. Obviously, initial capital 
equipment costs can vary dramatically, ranging e. g. c. $900 (c. 850 
euro) for an off-the-shelf drone used for fine-scale shark movements 
(Raoult and Gaston, 2018) to c. $35,000 (c. 33,000 euro) for a cus-
tom-made hexacopter used for leopard seal (Hydrurga leptonyx) photo-
grammetry (Krause et al., 2017). Prices of fully equipped fixed-wing 
drones, similar to the one used in our study, usually range from ca 
2000–20000 euros, although in our case the drone was custom made. 
Nevertheless, given the recurrent nature of angler surveys, and 
increasing availability of different types of drones, one of the major cost 
components is the labour required for each mission. Here the prices per 
mission will mostly depend on the salary costs of relevant personnel – 
technicians, scientists and pilots operating drones – which all differ 
among countries, as well as boat fuel costs (not required for drones). In 
our study the total time required per drone mission was about half of 
that used in boat-missions, even when including the post-processing 
time. This difference would be even higher for angler surveys under-
taken in larger water bodies, or water bodies with complex shorelines, as 
these would take considerably longer to survey by boat. To survey 
35 km2 area, the drone we used took about 1–1.5 h depending on the 
weather conditions, due to its fast-flying speed (50–60 km/h) and ability 
to pre-program the mission trajectory, which means that minimum 
piloting was required on site. Data postprocessing is currently the most 
time consuming and potentially costly aspect of any drone project 
(Harris et al., 2019). During this study, video analysis was performed 
manually by one of the research group analysts and took approximately 

1–1.5 h per individual mission. Yet, data post-processing can be 
considerably sped up using machine learning, especially if combined 
with thermal imagery, multispectral photography, light detection and 
ranging (LiDAR), and other sensors (Chust et al., 2008; Yang and Arti-
gas, 2010; Klemas, 2015; Yahyanejad and Rinner, 2015). 

Finally, an important advantage of fixed-wing drone surveys is the 
permanent, high resolution and spatially precise digital record, essential 
for reproducibility of results, reduced bias and future analyses. More-
over, fixed-wing drones can conduct angler counts in a range of weather 
conditions and, if thermal imagery cameras are used, even at night. To 
our knowledge night angler-counting surveys are exceptionally rare (but 
see a study observing angler activity from parking lots, Bova et al., 
2018), which leaves a large unknown in angling effort assessments. In 
our study the drone could be deployed in high winds (15 m/s) and low 
temperatures (− 20 C), all potentially causing challenges for small 
hexacopter drones, as well as for boat or land-based surveys. Due to their 
relatively high-flying altitude (50–70 m in current research) and electric 
engines, fixed wing drones are also inaudible and virtually invisible to 
anglers, creating less disturbance to their fishing activities. 

The major challenge and disadvantage of drone-based surveys could 
be special aviation restrictions for flying drones, such as the no-fly zone 
in the western part of the Kaunas WR which falls within the restricted 
airspace of Kaunas Airport (Fig. 1) as well as country specific challenges 
related to the General Data Protection Regulation (GDPR). For example, 
if we wanted to estimate angler numbers in the entire Kaunas WR, we 
would need some independent observations to assess relative numbers 

Fig. 3. Posterior probability density plots for parameter estimates for open water (top) and ice (bottom) fishing seasons in the dataset, comparing drone observations 
and sonar usage in the same spatial area and daytime (mornings only). The initial probability (r0) and the weekend multiplier (a) were used to estimate the final 
probability of sonar use (p). 
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of anglers in the surveyed area (70 % of the total WR area) versus the no- 
fly zone. Our comparison with the sonar data showed that the 30 % of 
the WR area unsurveyed had very large number of anglers, because it 
was close to the city. In such cases, other angler assessment methods 
(traditional visual surveys or smart phone application based) must be 
conducted in parallel to enable the extrapolation of angler counts. 

4.2. Assessments based on fish finder/sonar devices have huge advantages 
but still require work 

Technological development and availability of various fish finding 
devices and sonars has led to rapid and dramatic changes in all aspects of 
angling, and in many cases are considered to negatively affect fish 
species and stocks by increasing the fishing power of anglers (Cooke 
et al., 2021). These devices enable the measurement of depth, scan for 
bottom structure and vegetation, but their primary purpose is to locate 
fish. More advanced devices allow users to store maps from previous 
fishing trips and create personal databases. If stored online, 
de-personalised data from such databases may also be used for scientific 
purposes (Venturelli et al., 2016). We compared de-personalized data 
from fish finder Deeper® sonar users, with angler numbers obtained 
from fixed-wing drone missions flown over the same area during the 
same time interval and were able to calibrate the proportion of sonar 
users with surprisingly low uncertainty. 

For open water fishing about 2 % (1.5–2.6 %) of anglers on any given 
day used the sonar device, with the proportion being slightly higher on 
the weekends. During the ice fishing season, the device was considerably 
more popular and nearly 15 % (12–18 %) of anglers used it on any given 
day. This is not unexpected, because the Deeper® sonar device is 
especially useful for ice fishing, since it is relatively cheap, light and 
portable, making it convenient when fishing from a stable location (ice), 
but less so if fishing from the confines of a rocking boat. Such high 
adoption rates of the device allowed better estimates of daily angler 
numbers and extrapolation to the entire Kaunas WR. Importantly, our 
extrapolation showed that drone surveys conducted within the area 
where flights were permitted (~70 % of total area) during the mornings, 
counted about one quarter of all fishing trips. If no other knowledge 
about angler distribution was available, then the simplest extrapolation 
would be to assume that anglers are distributed evenly in the Kaunas 
WR, and that half of all anglers fish during mornings. This would imply 
that drone-based surveys observed about 35 % of all fishing trips. Yet, 
the no-fly zone was close to the Kaunas City where angler density was 
expected to be higher, especially during the ice season, hence the 
observed number of anglers would be less than 35 % of the total. Ideally, 
drone-based surveys should be conducted during mornings and evenings 
to assess whether the probability of sonar usage is similar between these 
periods of the day. However, in this study we relied on visual angler 
counts from drones which would make angler counting at dusk chal-
lenging as infrared cameras were not operationally available (but are 
currently being tested). Further, given the limited number of drone 
missions available for this study we focused on minimising error across 
weekdays and seasons, rather than different times of the day. 

Although the uncertainty ranges around the frequency of sonar use 
are relatively small, when uncertainty is fully propagated, the final 
annual number of fishing trips in Kaunas WR is estimated to be in the 
range of 52–250 thousand (95 % posterior probability range), with the 
median of ~107 thousand. In comparison, a 6-month study during 
1999–2000 of Lake Dartmouth, a 64 km2 reservoir located in the 
mountains of Victoria, southeastern Australia, used automatic car 
counters to record 2156 vehicle-trailer departures equating to approxi-
mately 3600 vessel trips when annualised (Douglas and Giles, 2001). 
This reservoir is only accessible by boat via a single launching ramp and 
Hunt et al. (2011) later scaled the vessel counts using concurrent creel 
survey data from anglers retrieving their vessels at the ramp to estimate 
total annual effort of 91 thousand angler hours during 1999–2000. 
Although a popular inland angling destination, Lake Dartmouth is 

relatively remote and far less populous than the environs of Kaunas WR. 
For the mornings of the survey area, the linear model and Bayesian 

analyses gave substantially similar mean values, but Bayesian 95 % 
uncertainty ranges were considerably wider, especially in the upper 
portion of the range. Compared with other assessment methods, the 
combination of the two approaches used here are highly promising not 
only for estimating the total number of anglers, but also for more 
detailed assessments of fishing effort. Daily sonar data can help show 
occasional high peaks in fishing effort that could have substantial impact 
on fish stocks, yet might be missed in stratified visual sampling and 
application of linear models. Moreover, the sonar data offers many other 
unique insights, such as spatial changes in angler movements, response 
to specific restrictions and other angler behaviour aspects (in prepara-
tion). Fish-finder devices can also provide data on bottom structure or 
vegetation cover, and more importantly they accumulate acoustic data 
of fish population abundance and, occasionally, size structure. Such 
acoustic data is used in standard approaches for the evaluation of marine 
fish stock status (Wassermann and Johnson, 2020), but private 
fish-finder devices open potentially new opportunities for stock assess-
ments in inland water bodies. Availability of such data, however, is 
entirely dependent on collaborative efforts between fish-finder 
manufacturing companies, and we suggest more work should be done 
to promote and acknowledge successful collaboration initiatives be-
tween companies and researchers within and between different 
countries. 

Before the fish-finder device data can be applied widely in assessing 
stock status, there are some important caveats to be addressed. First, 
there should be a sufficient uptake of these devices among an angler 
population to provide acceptably accurate estimates, thus additional 
studies are needed to determine country and region-specific uptake 
through time. For example, according to company estimates and our 
online surveys, nearly 20 % of Lithuanian anglers have the Deeper® 
sonar device, yet only around 2 % of anglers on a given day used the 
device during the open water season. It is not entirely clear what min-
imal total uptake rate (5, 10 or 20 %) among the population of anglers is 
needed before sufficiently accurate data can be obtained, but the ~20 % 
of total anglers using the device in Lithuania seems to give relatively 
narrow uncertainty ranges, at least in Kaunas WR, especially keeping in 
mind that according to Gundelund et al. (2021) 8 –10 % angler app users 
of total angler population were sufficient to give reliable estimates of e. 
g. sea trout catches and release rates. Second, calibration studies are and 
will be required to assess the relative proportion of device users among 
anglers in locations close and far away from big cities, through seasons, 
weekdays, different regions of the country and changes through time. 
Our angler surveys suggest that many anglers only used the device oc-
casionally, some only a few times after their purchase, whereas others 
used it regularly. The number of sonar users will also depend on further 
development of the device with additional features and benefits, mar-
keting strategies aimed at convincing anglers of the benefits, economic 
circumstances affecting future research and development and 
pricing-affordability, and availability of other devices competing for 
market share. These kinds of factors will variously influence the pro-
portion of active users which may decrease, increase or remain stable 
over time with consequential effects on data availability for researchers. 
A large range of fish-finder devices of different complexity and price 
both presents an opportunity, but also means that the uptake will vary 
among anglers and data from a particular type of device might be biased 
towards more dedicated and specialised anglers (Gundelund et al., 
2020) who may have higher avidity. Hence, regular calibration with 
independent observations will still be required, but could potentially be 
reduced to a smaller number of missions than the 39 used in this study. 
Finally, collaboration with fish-finder manufacturing companies also 
offers an opportunity to engage a population of anglers in citizen science 
projects, enabling their active participation in stock status assessments. 
Such opportunities often generate positive outcomes for angler satis-
faction and stock status (Lee et al., 2020). 
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5. Conclusions 

This study shows that both fixed-wing drones and anonymous angler 
data from fishfinder devices or apps can be used as statistically powerful 
and relatively accurate methods to estimate recreational effort. 
Compared to traditional creel-based surveys, these methods are faster 
and generally cheaper, especially if the surveys have to be repeated over 
longer periods of time, offsetting initial equipment costs of drones. The 
angler data from a fishfinder device could provide cost-efficient highly 
resolved spatial and temporal estimates of angling effort. However, this 
method requires effective collaboration with private companies selling 
such devices, reasonably high device uptake rate (ca 20 % of anglers in 
Lithuania own the device, but possibly even 10 % would be enough), 
and independent calibration through space and time. The fixed-wing 
drones can be effective for relatively large areas (dozens of kilo-
metres) that don’t have flying restrictions. They are environmentally 
friendly (no air or noise pollution), relatively insensitive to weather 
conditions, can be automated for rapid data postprocessing and they also 
provide permanent visual records for future reference. However, such 
surveys require initial capital equipment costs, as well as suitable skills 
to obtain flying licences and operate the machines safely and effectively. 

CRediT authorship contribution statement 

Justas Dainys: Conceptualization, Methodology, Validation, Formal 
analysis, Investigation, Writing – original draft, Writing – review & 
editing. Harry Gorfine: Formal analysis, Writing – original draft, 
Writing – review & editing. Fernando Mateos- González: Software, 
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